Filter by type:

Sort by year:

TenniSet: A Dataset for Dense Fine-Grained Event Recognition, Localisation and Description

Conference Paper
Hayden Faulkner, Anthony Dick
Proceedings of the 2017 Digital Image Computing Techniques and Applications Conference

 

This paper introduces a new video understanding dataset which can be utilised for the related problems of event recognition, localisation and description in video. Our dataset consists of dense, well structured event annotations in untrimmed video of tennis matches. We also include highly detailed commentary style descriptions, which are heavily dependent on both the occurrence as well as the sequence of particular events. We use general deep learning techniques to acquire some initial baseline results on our dataset, without the need for explicit domain-specific assumptions.

Paper

Dataset Available Soon

A Study of the Region Covariance Descriptor: Impact of Feature Selection and Image Transformations

Conference Paper
Hayden Faulkner, Ergnoor Shehu, Zygmunt L. Szpak, Wojciech Chojnacki, Jules R. Tapamo, Anthony Dick and Anton van den Hengel
Proceedings of the 2015 Digital Image Computing Techniques and Applications Conference, IEEE, Pages 68-75

We analyse experimentally the region covariance descriptor which has proven useful in numerous computer vision applications. The properties of the descriptor—despite its widespread deployment—are not well understood or documented. In an attempt to uncover key attributes of the descriptor, we characterise the interdependence between the choice of features and distance measures through a series of meticulously designed and performed experiments. Our results paint a rather complex picture and underscore the necessity for more extensive empirical and theoretical work. In light of our findings, there is reason to believe that the region covariance descriptor will prove useful for methods that perform image super-resolution, deblurring, and denoising based on matching and retrieval of image patches from an image dictionary.

AFL Player Detection and Tracking

Conference Paper
Hayden Faulkner, Anthony Dick
Proceedings of the 2015 Digital Image Computing Techniques and Applications Conference, IEEE, Pages 100-107

This paper is an empirical study of the application of visual detection and tracking methods to the problem of locating and tracking all AFL players during a game. While most person detection and tracking algorithms are designed for pedestrians, we show that with appropriate modifications, state of the art methods can be adapted to a more challenging domain where motion is significantly more varied and occurs in a much wider area.

Approximate Approaches to the Traveling Thief Problem

Conference Paper
Hayden Faulkner, Sergey Polyakovskiy, Tom Schultz, Markus Wagner
Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, ACM, Pages 385-392

Picture1

This study addresses the recently introduced Traveling Thief Problem (TTP) which combines the classical Traveling Salesman Problem (TSP) with the 0-1 Knapsack Problem (KP). The problem consists of a set of cities, each containing a set of available items with weights and profits. It involves searching for a permutation of the cities to visit and a decision on items to pick. A selected item contributes its profit to the overall profit at the price of higher transportation cost incurred by its weight. The objective is to maximize the resulting profit.

We propose a number of problem-specific packing strategies run on top of TSP solutions derived by the Chained Lin-Kernighan heuristic. The investigations provided on the set of benchmark instances prove their rapidity and efficiency when compared with an approximate mixed integer programming based approach and state-of-the-art heuristic solutions from the literature.

Code and full results available here